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1 Summary of Master Thesis
This document is an attempt to quickly explain my master’s thesis. The
starting point was the Kronecker-Weber’s theorem :

Théorème 1.1. By posing Qab the maximal abelian extension of Q. Then,
if ζn is an n-th root of unity then we have :

Qab =
⋃

n∈N∗
Q(ζn) et Gal(Qab/Q) ≃ Ẑ∗ = lim←−(Z/nZ)∗.

1



This allows to obtain the diagram below (the groups above the arrows being
the associated Galois groups):

Qab

Q(ζn)

OO

Q

(Z/nZ)∗

OO
Ẑ∗=lim←−(Z/nZ)∗

99

Hilbert’s twelfth problem is the generalization of this theorem to all number
fields which is still not solved, my thesis is interested in the case of totally
imaginary quadratic fields.
Our main goal for chapter II was therefore to generalize this situation to
the case of imaginary quadratic fields K. Our real goal was to establish the
class field of radius nOK of the field K which will play a role analogous to
Qab. To achieve this, we had to combine tools coming from two fields of
mathematics (class field theory, complex analysis).
After the introduction of Weber function and show that the j-invariant is
an algebraic integer, we are focus to exposes the class field of radius K for
the module nOK . We establish the generalization of the Kronecker-Weber
theorem for imaginary quadratic fields :

Théorème 1.2. The class field of radius nOK of K is K(j(OK), τOK
( 1

n)).
Moreover, if O is an order of conductor n in K then the class field of radius
nOK is K(j(O), τO(ωK)) where ωK = dK+

√
dK

2 , dK being the discriminant
of K.
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Thus, we obtain the diagram :

Kab = ⋃
n H(τOK

( 1
n))

H = K(j(OK))

OO

K

C(OK)

OO

Q

Gal(K/Q)

OOC(OK)⋊Gal(K/Q)

99

2 Kronecker-Weber’s Theorem
We will now try to highlight the different links we have made. Let us recall
our starting point, the basic field was that of the rationals Q, we posed Qab

the maximal abelian extension of Q. The first step of my internship was to
understand the interest and the complexity of the Kronecker-Weber theo-
rem. We have separated this first chapter into three parts.

The first one is a preliminary study of cyclotomic extensions, we make
explicit in Corollary 1.3 and Remark 1.4 the fact that they are abelian
extensions so, we have :

Corollaire 2.1. Let ζn be a primitive root n-th of the unit. Then, by posing
K = Q(ζn), K/Q is an abelian extension and G = Gal(K/Q) ≃ (Z/nZ)×.

It is easily deduced that their integer ring OK is a Z-free module of rank
|Gal(K/Q)|. After that, we study more particularly the rings of integers of
cyclotomic extensions in order to establish in Theorem 1.7 that :

Théorème 2.2. The ring of integers of K is OK = Z[ζ].

We also study the decomposition of primes in a cyclotomic extension:
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Théorème 2.3. Let ζ = e
2iπ
n , K = Q(ζ) and p prime. We write n = pkm

with pgcd(p, m) = 1. Then,

• The ramification index of p is φ(pk) = e.

• The degree of inertia f is the (multiplicative) order of p mod m.

The second is a brief reminder of class field theory in the local and global
cases. In the global case, we expose class field theory through ideals and
adeles to try to have a complete study. We also take the opportunity to
present the Kummer theory,

In third part, the Galois theory and class field theory combined with our
topological knowledge studied in Appendix 11 allowed us to establish the
(Kronecker-Weber) theorem:

Théorème 2.4. By posing Qab the maximal abelian extension of Q. Then,
if ζn is an n-th root of unity then we have :

Qab =
⋃

n∈N∗
Q(ζn) et Gal(Qab/Q) ≃ Ẑ∗ = lim←−(Z/nZ)∗.

We present two demonstrations, one using adels by global arguments, the
other by local arguments where we will establish the Kronecker-Weber the-
orem in the local case to deduce the global case. This is a great example of
the use of the "local-global" principle. All this allows to obtain the diagram
below (the groups above the arrows being the associated Galois groups):

Qab

Q(ζn)

OO

Q

(Z/nZ)∗

OO
Ẑ∗=lim←−(Z/nZ)∗

99

3 Generalization to quadratic fields
Our main goal for chapter II was therefore to generalize this situation to
the case of imaginary quadratic fields K. Our real goal was to establish the
class field of radius nOK of the field K which will play a role analogous to
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Qab. To achieve this, we had to combine tools coming from two fields of
mathematics (class field theory, complex analysis).
To begin with, we introduced in section 4 the notion of order :

Définition 3.1. We call O an order of K if it is a subring of K, a Z-free
module of rank 2 without torsion and K is the fraction field of O.
The number f = [OK : O] is the conductor of O.

Définition 3.2. In this case, thanks to the existence theorem, there exists
L an extension of K such that Gal(L/K) ≃ C(O).
The extension L is called the ring class field of order O.

Exemple 3.1. The ring of the class field of K for OK is its Hilbert class field.
Then, the study of objects of an analytical nature in section 5 was necessary
to reach our objective.

Définition 3.3. For ω1, ω2 ∈ C, let Λ = [ω1, ω2] be a lattice of C. A
complex function f is elliptic for Λ if f is meromorphic on C and for any
z ∈ C \ Λ, f(z) = f(z + ω1) = f(z + ω2).

Exemple 3.2. The ℘-Weierstrass function for a lattice Λ :

℘Λ(z) = 1
z2 +

∑
ω∈Λ, ω ̸=0

( 1
(z − ω)2 −

1
ω

)
.

We define the equivalence relation :

Définition 3.4. If there exists λ ∈ C such that for two lattice Λ and Λ′ we
have Λ′ = λΛ then we say that Λ and Λ′ are homothetic.

This allowed us to introduce in section 6 the function j :

Définition 3.5. For a lattice Λ, the number j(Λ) = 1728 g2(Λ)3

g2(Λ)−27g3(Λ) is
always defined.

We show that this function is invariant by homothety :

Théorème 3.6. We have the equivalence j(Λ) = j(Λ′) if and only if there
exists λ ∈ C such that that Λ′ = λΛ.

We did all this to establish that the number j(Λ) is an algebraic integer. For
that we must introduce the complex multiplication thanks to the following
theorem:
Théorème 3.7. For any α ∈ C \ Z, we have the equivalences following
equivalences:
The function ℘Λ(α.) is rational in ℘Λ(.) if and only if αΛ ⊂ Λ if and only
if there exists an order O of K such that α ∈ O and Λ are homothetic to an
eigenideal of O.
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Définition 3.8. The order O (of the last theorem) is the complex multipli-
cation ring of the lattice Λ.

Thus, we can link the notion of lattice to that of order with corollary 7.10 :

Corollaire 3.9. There is a 1-1 correspondence between the group of classes
C(O) and the classes homothety classes of lattice of C which have O as their
complex multiplication ring.

Finally, by establishing that the j-invariant is an algebraic integer by linking
it to the ring class field of an order in the theorem :

Théorème 3.10. The number j(a) is an algebraic integer and K(j(a)) is
the ring class field of order O.

Remarque 3.11. The extension K(j(OK)) is abelian maximal unramified
on K where the complex conjugation acts on C(OK) by the application (g 7→
g−1).

We thus obtain the following commutative diagram:

H = K(j(OK))

K

C(OK)

OO

Q

Gal(K/Q)

OOC(OK)⋊Gal(K/Q)

99

To conclude our algebraic study, we introduced in section 8 the Weber func-
tion:
Définition 3.12. For any lattice Λ, we will call the Weber function τΛ :
C→ C defined by :

τΛ(z) =



g2(Λ)2

∆(Λ) ℘Λ(z)2 if g3(Λ) = 0

g3(Λ)
∆(Λ) ℘Λ(z)3 if g2(Λ) = 0

g2(Λ)g3(Λ)
∆(Λ) ℘Λ(z)3 else.

where ∆(Λ) = g2(Λ)3 − 27g3(Λ)2.
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To reach our goal which exposes the class field of radius K for the module
nOK . We establish the generalization of the Kronecker-Weber theorem for
imaginary quadratic fields :

Théorème 3.13. The class field of radius nOK of K is K(j(OK), τOK
( 1

n)).
Moreover, if O is an order of conductor n in K then the class field of radius
nOK is K(j(O), τO(ωK)) where ωK = dK+

√
dK

2 , dK being the discriminant
of K.

Thus, we obtain the diagram :

Kab = ⋃
n H(τOK

( 1
n))

H = K(j(OK))

OO

K

C(OK)

OO

Q

Gal(K/Q)

OOC(OK)⋊Gal(K/Q)

99

4 Elliptic curves
Finally, since elliptic functions naturally define elliptic curves, section 9
introduces the Weierstrass equation :

Définition 4.1. For g2, g3 ∈ K, if ∆ = g3
2 − 27g2

3 ̸= 0 so
y2 = 4x3 − g2x− g3 is a Weierstrass equation.
It defines an elliptic curve E. We will note E(K) the set of solutions of
y = 0 on K and let us notice that ∞ ∈ E(K).

We have the following theorem :

Théorème 4.2. Let E be an elliptic curve on C given by the equation :

y2 = 4x3 − g2x− g3 where g2, g3 ∈ C with ∆ = g3
2 − 27g2

3 ̸= 0.

So, there is a unique lattice Λ of C such as g2 = g2(Λ) et g3 = g3(Λ).
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We then show that E(K) is an additive group:

Proposition 4.3. The set E(K) is an additive group where∞ is the neutral
element.

Then, we redefine the complex multiplication for an elliptic curve:

Définition 4.4. Let EndC(E) = {α ∈ C, αΛ ⊂ Λ}. If Z ⊊ EndC(E) then
E has a complex multiplication.

Thus all our algebraic theory applies to elliptic curves. Let E be an elliptic
curve on H = K(j(E)) having OK as the complex multiplication ring. Let
n ∈ N∗, we set E[n] to the n-twisting points of E on an algebraic closure K.
Thus, we can modify the last diagram:

Kab =
⋃
n

H(E[n])

H = K(j(E))

OO

K

C(OK)

OO

Q

Gal(K/Q)

OOC(OK)⋊Gal(K/Q)

99

5 What happens next?
In spite of our initial goal, these results open new questions that would
deserve and could occupy us for many years to come. The time of the in-
ternship being short, we will only be able to give a few hints in this thesis.

First, the introduction of elliptic curves strongly encourages us to gener-
alize our results to spaces more general than the complex plane. The second
appendix, which establishes the Riemmann-Roch theorem, is a beginning of
work in the direction of algebraic geometry. The combination of algebraic
geometry and algebraic number theory leads us to focus on arithmetic ge-
ometry which is a rich area for research. For that, I would have to reinforce
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my knowledge of algebraic geometry around the notion of schemes and al-
gebraic variety.

Also, we have established the existence of a particular class field, so its
explicit construction is a natural problem. Trying to solve the global case
automatically seems counterproductive and restricting oneself to the local
case seems more fruitful despite some apparent difficulty. The work of Lubin-
Tate supports this and deserves to be studied in depth. The local-global
principle and the adelic constructs allow us to nourish the hope of under-
standing the global case through local constructions.
However, a marginal interest in category theory does not seem totally su-
perfluous either and the computer implementation of these constructions,
once established, is also a rich issue.
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This document is an attempt to quickly explain my master’s thesis. The
starting point was the Kronecker-Weber’s theorem :

Théorème 5.1. By posing Qab the maximal abelian extension of Q. Then,
if ζn is an n-th root of unity then we have :

Qab =
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n∈N∗
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Hilbert’s twelfth problem is the generalization of this theorem to all number
fields which is still not solved, my thesis is interested in the case of totally
imaginary quadratic fields.
Our main goal for chapter II was therefore to generalize this situation to
the case of imaginary quadratic fields K. Our real goal was to establish the
class field of radius nOK of the field K which will play a role analogous to
Qab. To achieve this, we had to combine tools coming from two fields of
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After the introduction of Weber function and show that the j-invariant is
an algebraic integer, we are focus to exposes the class field of radius K for
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theorem for imaginary quadratic fields :
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of K.

11



Thus, we obtain the diagram :

Kab = ⋃
n H(τOK

( 1
n))

H = K(j(OK))

OO

K

C(OK)

OO

Q

Gal(K/Q)

OOC(OK)⋊Gal(K/Q)
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Finally, since elliptic functions naturally define elliptic curves, after we in-
troduce the Weierstrass equation, we show that elliptic curves on C are in
bijection with the lattice of C. After that, we determine that E(K) is an
additive group. Then, we redefine the complex multiplication for an elliptic
curve. Thus all our algebraic theory applies to elliptic curve.

Let E be an elliptic curve on H = K(j(E)) having OK as the complex
multiplication ring. Let n ∈ N∗, we set E[n] to the n-twisting points of E
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on an algebraic closure K. Thus, we can modify the last diagram:
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In spite of our initial goal, these results open new questions that would
deserve and could occupy us for many years to come. The time of the in-
ternship being short, we will only be able to give a few hints in this thesis.

First, the introduction of elliptic curves strongly encourages us to gener-
alize our results to spaces more general than the complex plane. The second
appendix, which establishes the Riemmann-Roch theorem, is a beginning of
work in the direction of algebraic geometry. The combination of algebraic
geometry and algebraic number theory leads us to focus on arithmetic ge-
ometry which is a rich area for research. For that, I would have to reinforce
my knowledge of algebraic geometry around the notion of schemes and al-
gebraic variety.

Also, we have established the existence of a particular class field, so its
explicit construction is a natural problem. Trying to solve the global case
automatically seems counterproductive and restricting oneself to the local
case seems more fruitful despite some apparent difficulty. The work of Lubin-
Tate supports this and deserves to be studied in depth. The local-global
principle and the adelic constructs allow us to nourish the hope of under-
standing the global case through local constructions.
However, a marginal interest in category theory does not seem totally su-
perfluous either and the computer implementation of these constructions,
once established, is also a rich issue.
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